Infrared Intensities as a Quantitative Measure of Intermolecular Interactions. Part XX.¹ The Electronic Nature of Amino-, Ammonio-, and **Diazonio-substituents**

By N. C. Cutress, T. B. Grindley, A. R. Katritzky,* M. V. Sinnott, and R. D. Topsom,* School of Chemical Sciences, University of East Anglia, Norwich, England and the School of Physical Sciences, La Trobe University, Melbourne, Australia

Infrared intensities of series of meta-disubstituted benzenes show that the ND_{a}^{+} and NMe_{a}^{+} substituents are resonance donors. This is substantiated by the para-compounds; however, NMe3+ is a polarizable group. The diazonio-group N₂⁺ is a strong acceptor substituent. The twisted NR₂ group is a resonance donor of strength comparable to CHMe₂.

THE resonance donor effect of the ammonio- and substituted ammonio-groups has not been widely recognized, although it is clearly indicated ² by infrared intensities of *para*-disubstituted compounds XC₆H₄NH₃⁺ and XC₆H₄NMe₃⁺, and is suggested by other physical and chemical evidence (for a summary \dagger see ref. 2). We EXPERIMENTAL

Compounds were obtained commercially or prepared by known methods. Purities were checked by gas chromatography or melting points. Anilines were N-deuteriated as before.³ Spectra were obtained on a Perkin-Elmer 125 spectrophotometer under conditions similar to those pre-

		TABLE	1		

Monosubstituted benzene cationic compounds

		1500						
Substituent	Solvent	±σ _R ° α	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	εΑο	A ª	۶,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	εΑε
[†] nD₃Cl−	D_2Of D_2Og Me_2SO	0·183 0·189 0·332	1605 1603 1601	77 86 540	689 729 2040	230 4870	$1500 \\ 1499 \\ 1496$	$130 \\ 134 \\ 609$
⁺ _N Me ₃ Cl-	${ m D_2O}\ {}^{\prime}$ ${ m D_2O}\ {}^{\prime}$	$0.149 \\ 0.138$	$1599 \\ 1596$	28 29	490 435		$\begin{array}{c} 1495\\ 1489 \end{array}$	$165 \\ 189$
⁺ NMe₃I−	Me ₂ SO	0.145	1594	24	470	340		
$N_2^+BF_4^-$	D_2Of Me_2SO	0·30 4 0·290	1591 1570 h	$\begin{array}{c} 128\\ 146 \end{array}$	$\begin{array}{c} 1726 \\ 1550 \end{array}$	1020		

^a Of substituent from ref. 3. ^b None of these compounds show a resolved band near 1580 cm⁻¹. ^c Peak extinction coefficient. $\varepsilon_A = a_{\max} | cl$ where a_{\max} , is the absorbance at peak maximum, c is the concentration in mol per litre and l is the cell length in cm. ^a The integrated intensity of the 1600 and 1585 cm⁻¹ bands. ^e ε is an estimate of the integrated intensity given by $\varepsilon = \varepsilon_A \Delta v^{\frac{1}{2}}$ where $\Delta v^{\frac{1}{2}}$ is the half-height line width. ^f Taken from ref. 3. ^e Measured in calcium fluoride cells (present work). ^h Ref. 6 gives $v_{16a} = 1570$ in 50% aqueous HCl.

now present further evidence for this resonance donor effect by NR_3^+ (R = H or Me), together with an estimate of the acceptance power of diazonio-group $\mathrm{N_{2}^{+}}$ and a study of the donor properties of the twisted NR₂ group and its conjugate acid, using equations (1)—(3) which

$$A_{\nu 16} = 17,600 \ (\sigma_{\rm R}^{\circ})^2 + 100 \tag{1}$$

mono-Ph

$$A_{\nu 16} = 11,800 (\sigma_{\rm R}^{\circ} X - \sigma_{\rm R}^{\circ} Y + \lambda)^2 + 170 \quad (2)$$
para-Ph

$$A_{\nu 16} = 19,000 \left[(\sigma_{\rm R}^{\circ} X)^2 + (\sigma_{\rm R}^{\circ} Y)^2 + \sigma_{\rm R}^{\circ} X \sigma_{\rm R}^{\circ} Y \right] + 340 \quad (3)$$

relate the infrared intensities of v_{16} in mono-,³ para-di-,² and meta-di-substituted benzenes.4

See also G. R. Wiley and S. I. Miller, J. Org. Chem., 1972, 37, 767, for evidence that the trimethylammonium group affects chemical shifts via a resonance mechanism.

Part XIX, N. C. Cutress, A. R. Katritzky, C. Eaborn, and R. D. Topsom, J. Organometallic Chem., 1972, 43, 131.
 P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968, 90, 1767.

viously specified.⁵ Dimethyl sulphoxide was distilled from calcium hydride and stored over molecular sieves (4A) AnalaR sodium chloride was dried under vacuum for 2 days at 225 °C. Other solvents were purified as before. Intensity area A values quoted are averages of four readings usually on two separate solutions; reproducibility of $A^{\frac{1}{2}}$ was ± 1 unit in non-polar solvents or in deuterium oxide using calcium fluoride cells. Most compounds containing cationic groups were run either in deuterium oxide using Irtran cells as previously² or in sodium chloride-saturated dimethyl sulphoxide in sodium chloride cells. Reproducibility of $A^{\frac{1}{2}}$ in both cases is ± 4 units.

RESULTS AND DISCUSSION

The Ammonio-substituents ND_3^+ .—The infrared intensities of the relevant monosubstituted benzene³ indicate

⁸ R. T. C. Brownlee, R. E. J. Hutchinson, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968. 90, 1757.

⁴ A. R. Katritzky, M. V. Sinnott, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1969, 91, 628.
 ⁵ R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Amer. Chem. Soc., 1966, 88, 1413.
 ⁶ R. H. Nuttall, E. R. Roberts, and D. W. A. Sharp, Spectro-trian 4, 2021, 17, 047.

chim. Acta, 1961, 17, 947.

 ${\sigma_R}^\circ\pm 0.18~{\rm for}~ND_3^+~{\rm and}~\pm 0.47~{\rm for}~ND_2$: the signs were deduced to be negative in both cases from intensity measurements of a series of *para*-disubstituted com-

dissociation of the hydrochloride in dimethyl sulphoxide. This dissociation is confirmed by the ultraviolet spectrum of aniline hydrochloride in Me₂SO.

				v(cr	v(cm ⁻¹)		ε _A ^b			
Substi	tuents	Solvent	σR°α	16a	16b	16a	16b	A °	R_m^{d}	fm e
ND ₃ +Cl-	Me	$D_{0}O$	-0.10	1618	1600	79	73	1530	0.25	0.25
•	Cl	D,O	-0.52	1602		174		2440	0.33	0.36
	Br	$D_{0}O$	-0.23	1600	1594	71	81	2720	0.35	0.36
	F	$D_{3}O$	-0.34	1615		182		4330	0.46	0.46
	OMe	$D_{s}O$	-0.43	1617	1604	160	121	5500	0.52	0.55
	NO ₂ ^f	$D_{y}O$	+0.12	1602	1622	6	16	470	0.08	0.18
	CF_3	$D_{2}O$	+0.11	1612	1622	23	10	225	0.00	0.16
	CO ₂ Me	$D_{2}O$	+0.16	1614	1599	17	117	1400	0.24	0.08
	-	-								0.25 0
ND_{2}	Me	CC14	-0.10	1614	1592	184	97	5180	0.51	0.53
-	Cl	CC]	-0.25	1605	1580	331	60	7130	0.60	0.61
	Br	CCI.	-0.53	1603	1569	159	48	7570	0.62	0.62
	F	CC1	-0.34	1625		163	127	8890	0.67	0.71
				1611	1588		117			
	NO_2	CCl4	+0.12	1609	1588	84	28	2780	0.36	0.41
NMe ₃ +Cl-	- Me	D_2O	-0.10	1616	1591	40	23	1530	0.25	0.22
-	Cl	Me ₂ SO	-0.25	1590		106		2230	0.32	0.32
	\mathbf{F}	D ₂ Õ	-0.34	1612		256		4620	0.48	0.44
	OMe	D_2O	-0.43	1613	1595			7000	0.59	0.52
	NMe ₃ +	D_2O	-0.12	1607		28		2860	0.36	0.12
$N_2^+BF_4^-$	F	Me ₂ SO	-0.34	1596	1588	148		2400	0.33	0.32
					1580					
	\mathbf{Br}	Me ₂ SO	-0.53	1576	1556	51	36	1670	0.26	0.26
	Cl	Me ₂ SO	-0.25	1578	1560	49	41	1460	0.25	0.26
	NO_2	Me ₂ SO	+0.12	1598	1590	199		3995	0.44	0.40
	CF.	Me _s SO	+0.11	1604	1570	41	74	2115	0.31	0.36

• Of substituent from ref. 3. ^b Peak extinction coefficient. $\varepsilon_A = a_{\max}/cl$, where a_{\max} is absorbance at peak maximum, c is concentration in mol per litre and l is cell length in cm. ^e The integrated intensity of the 1600 and 1585 cm⁻¹ bands. ^d $R_m = [(A - 340)/19,000]^{\frac{1}{2}}$. ^e $f_m = [\sigma_B^{\circ} 1^2 + \sigma_B^{\circ} 2^2 + \sigma_B^{\circ} 1 \sigma_B^{\circ} 2]^{\frac{1}{2}}$. ^f Measured in calcium fluoride cells. ^e Range arises from asymmetry of CO₂Me substituent (see ref. 4).

pounds.² Remeasurement of PhND₃⁺Cl⁻ now gives $\sigma_R^{\circ} \pm 0.19$ for ND₃⁺ in D₂O solution in good agreement with the previous result, but a high apparent value in

Results now obtained for meta-disubstituted deriva-

tives XC₆H₄ND₃⁺ and XC₆H₄ND₂ (Table 2) are plotted

FIGURE 1 $[\mathcal{A}_{obs} - 340]^{\dagger}$ plotted against $[(\sigma_R^{\circ}X)^2 + (\sigma_R^{\circ}Y)^2 + \sigma_R^{\circ}X\sigma_R^{\circ}Y]^{\dagger}$ for meta-X·C_gH₄·Y: for Y = ND₃⁺ (\bullet) with σ_R° taken as -0-19; for Y = ND₂(\bigcirc) with σ_R° taken as -0-47; for Y = NMe₃⁺ (\succ) with σ_R° taken as -0-15; for Y = N₂⁺ (\Box) with σ_R° taken as +0.29. The line drawn has slope (19,000)^{\dagger} of equation (3)

 Me_2SO (Table 1). We believe this high value to be spurious and to be due to free aniline formed by partial

FIGURE 2 $[A_{obs} - 340]^{\dagger}$ plotted against $[(\sigma_R^{\circ}X)^2 + (\sigma_R^{\circ}Y)^2 + \sigma_R^{\circ}X\sigma_R^{\circ}Y]^{\dagger}$ for meta-X·C₆H₄·Y: for $Y = ND_3^{+}$ (\bullet) with σ_R° taken as +0·19; for $Y = NMe_3^{+}$ (\times) with σ_R° taken as +0·15. The line drawn has slope (19,000)^{\dagger} of equation (3)

in Figure 1; clearly they are in good agreement with ND_{3}^{+} acting as a *donor* substituent. Figure 2 shows the assumption of acceptor behaviour for ND_{3}^{+} does not yield an acceptable relation. The results of Table 2

TABLE 2

meta-Disubstituted benzene cationic compounds

and Figure 1 also clearly confirm the donor properties of ND_{2} , as expected.

The Trimethylammonio-substituent NMe₃⁺.—For the monosubstituted benzene PhNMe₃⁺Cl⁻, the previous results in D₂O and the present results in D₂O and Me₂SO all give $\sigma_{\rm R}^{\circ} \pm 0.144 \pm 0.005$. No dissociation is expected for this compound, and there is evidently little solvent effect. The results for the meta-disubstituted derivatives

justified ² correction factor $K_{\rm X}\sigma_{\rm R}^{\circ}D$ in $[\sigma_{\rm R}^{\circ}1 - \sigma_{\rm R}^{\circ}2 + K_{\rm X}\sigma_{\rm R}^{\circ}D]$ with $K({\rm N_2}^+) = 0.99$ gave an excellent correlation (Figure 3). The large magnitude of $K({\rm N_2}^+)$ reflects the strong acceptor power of this substituent: this acceptor power is underlined by the exalted value of $\sigma_{\rm R}^{\circ}$ deduced from ¹⁹F measurements ⁸ of +0.65 which includes direct resonance interaction between the substituents in p-fluorodiazonium cation: ² however, the

para-Disubstituted benzene cationic compounds (dimethyl sulphoxide solutions)

			1000							
				, ,	۵. ۲3	<i>b</i>			$f_{\mathbf{p}}$	
Substituent		σR°σ	<u> </u>	16b	16a	16b	$_A \circ$	R_p^{d}	e	\overline{f}
NMe_+I-	NMe.	-0.53	1605		237		5000	0.64	-0.38	
	OMe	-0.43	1606	1593	85	89	1950	0.39	-0.58	
	OEt	-0.44	1607	1591	81	80	1970	0.39	-0.53	
	Fø	-0.34	1606				830	0.24	-0.19	
	Me	-0.10	1604	1590	4	7	133	0.00	+0.02	
	NO, 9	+0.12	1622	1598			1500	0.34	0.32	
N.+.BF	NMe.	-0.53	1592		2340		33,780	1.69	0.82	1.68
4 · 4	OMe	-0.43	1582		1150		17,215	1.20	0.72	1.22
	F	-0.34	1578		661		6920	0.76	0.63	0.76
	Cl	-0.22	1561		450		4950	0.64	0.51	0.63
	Me	-0.10	1581		371		3970	0.57	0.39	0.53
	NO_2	+0.12	1610		63		1295	0.31	0.15	

^a Of substituent from ref. 3. ^b Peak extinction coefficient. $\varepsilon_A = a_{\max}/cl$ where a_{\max} is absorbance at peak maximum, c is concentration in mol per litre and l is cell length in cm. ^e The integrated intensity of the 1600 and 1585 cm⁻¹ band. ^d $R_p = [(A - 170)/11,800]^{4}$. ^e $f_p = \sigma_R^{\circ}1 - \sigma_R^{\circ}2$. $f_p = [\sigma_R^{\circ}1 - \sigma_R^{\circ}2 + K_X\sigma_R^{\circ}1]$ for d orbital acceptors or $= [\sigma_R^{\circ}1 - \sigma_R^{\circ}2 + K_X(\sigma^+ - \sigma)]$ for acceptor groups. ^e Measured by P. J. Q. English using D₂O on NMe₃⁺, Cl⁻.

 $XC_6H_4NMe_3^+$ (Table 2) plotted in Figures 1 and 2 clearly confirm the resonance donor character of the NMe_3^+ group with $\sigma_R^\circ = -0.14$.

We have now examined a wider range of *para*-disubstituted derivatives $(XC_6H_4NMe_3^+)$ with the results summarized in Table 3. Although the results for the *para*-substituents F, Me, and NO₂ are in good agreement with those predicted, for the strong donor substituents OMe, OEt, and NMe₂, a higher intensity is observed than expected. This is probably due to the considerable polarizability of the bulky NMe₃⁺ group, and is similar to the results found for the CMe₃ compounds.⁷

to the results found for the CMe₃ compounds.⁷ The Diazonio-substituent N_2^+ .—From $PhN_2^+BF_4^-$ in Me₂SO we calculate σ_R° for N_2^+ as +0.29, in good agreement with the previous ³ value of +0.30 deduced from $PhN_2^+BF_4^-$ measured in D₂O. Difficulty was experienced with the substituted diazonium cations: in the meta-series the Me and NMe₂ compounds decomposed obviously during preparation or measurement, however, satisfactory results were obtained for five compounds (Table 2). Good agreement is found with equation (3), as shown in Figure 1.

In the *para*-series, only derivatives with electron-donor substituents were stable. A plot of $(A_{obs} - 170)^{\frac{1}{2}}$ against $(\sigma_{\rm R}^{\circ}1 \text{ or } \sigma_{\rm R}^{\circ}2)$ showed large discrepancies from the line of slope 11,800, indicative of strong conjugative interaction (Figure 3); however, use of the previously

discrepancy is only partly explained by the factor ² $0.5 K_{\rm A}$ ($\sigma^+ - \sigma$) of 0.17.

$$A_{N_{2}}^{1} = +45.57 - 163.8 (\sigma^{+} - \sigma)$$
 (4)

$$v_{N^+\equiv N} = 131.6 (\sigma^+ - \sigma) + 2294$$
 (5)

We have also found that the intensities and frequencies

of the $v(N\equiv N)$ bands for the substituted diazonium cations (Table 4) are correlated by equations (4) and (5);

 8 R. W. Taft and W. A. Sheppard, personal communication, referred to in ref. 3.

⁷ T. J. Broxton, L. W. Deady, A. R. Katritzky, A. Liu, and R. D. Topsom, *J. Amer. Chem. Soc.*, 1970, **92**, 6845.

Benzene diazonium $\nu N \equiv N$ frequencies and intensities ^a

	220	0		
Substituent	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EA D	A °	σ+ — σ ^d
p-NMe,	2165	675	41,000	-0.87
∲-OMe	2247	245	11,750	-0.51
<i>••</i> -F	2282	131	3775	-0.13
·p-Cl	2286	147	4050	-0.15
∲-Me	2270	185	5920	-0.14
$\bar{\phi}$ -NO,	2302	64	1470	+0.01
m-F	2295	81	2210	+0.01
m-Br	2293	94	2218	+0.01
m-Cl	2295	93	9460	+0.03
$m - NO_2$	2294	44	1215	-0.04
m-CF ₃	2292	61	1700	0.09
н	2286	104	2530	0.00

^a In Me₂SO. ^b ε_A is the peak extinction coefficient. $\varepsilon_A =$ a_{\max}/l where a_{\max} is maximum peak absorbance, c is concentration in mol per litre and l is the cell length in cm. • Integrated intensity $A = \sum a_{\max}/d$. a_{\max} Taken from C. D. Ritchie and W. F. Sager, Progr. Phys. Org. Chem., 1964, 2, 334.

the correlation coefficients (r = 0.973 and 0.965 respectively) are significantly better than that for similar treatment using σ^+ and much better than that using σ alone. Previous evidence ⁹ suggests that vibrational frequencies of groups capable of conjugative electron withdrawal follow σ^+ , but the frequency and intensity of $v(N_2^+)$ evidently require an enhanced σ^+ value. Previous work by Whetsel 10 and by Nuttall 6 did not lead to a clear-cut relation for v or A. Kazitsvna¹¹ first related frequency and σ using σ^+ for strong donors but later ¹² used σ^+ for all substituents. For $\nu(N \equiv N)$ intensity, Kazitsyna¹¹ claimed the relation log $A \propto \sigma^+$. However, while Kazitsyna's values are slightly larger than those obtained here, they are linearly related by the factor 1.12 (r = 0.997). Thus it appears that while the intensities are solvent dependent, the intramolecular electronic interactions are proportional in Me₂SO and MeOH.

The Twisted NR₂-substituent.—The correlation of the infrared intensities of ortho-disubstituted benzenes with

 $\sigma_{\rm R}^{\circ}$ values ⁴ is less precise than for the *meta*- and *para*analogues. However, the overall similarity in the A values of quinuclidine (1) and quinuclidine cation (2) with tetralin (3) (Table 5) suggests that CH_3 , NH_3^+ , and NH₂ (twisted so that the lone pair is orthogonal to the

TABLE 5

ortho-Disubstituted benzene cationic compounds

		16	00	1585			
Compound	Solvent	τ, Γ	εAa	νεΔα		A b	
Tetralin	CCl4 °	1601	7	1579	10	210	
Benzoquinuclidine	CCl ₄ ¢	1623	4	1585	5	250	
-	-	1605	14				
Benzoquinuclidine deuteriobromide	Me ₂ SO	1615	10	1595	7	200	

^a Peak extinction coefficient as in Table 2. ^b The integrated intensity of the 1600 and 1585 cm⁻¹ band. Containing 10% benzene.

 π -system of the benzene ring) are all resonance donors of the same order of magnitude. This overall similarity suggests equivalent mechanisms of electron donation from each of these seemingly dissimilar groups.

$$A_{\nu 16} = 15,900 \{ (\sigma_{\rm R}^{\circ} 1)^2 + (\sigma_{\rm R}^{\circ} 2)^2 - \sigma_{\rm R}^{\circ} 1 \sigma_{\rm R}^{\circ} 2 \}$$
(6)
prtho-Ph

Equation (6), derived for ortho-disubstituted benzenes,⁴ indicates for tetralin a $\sigma_{\rm R}^{\circ}$ of -0.115 for each substituent in good agreement with the value³ for n-propyl of -0.109. For benzoquinuclidine, assuming σ_R° for the •CH(CH₂·)₂ group is -0.115 (cf. isopropyl -0.115^{3}), gives σ_{R}° for $\cdot N(CH_2)_2$ of -0.134 using equation (6); and a similar calculation gives $\cdot ND(CH_2 \cdot)_2$ of -0.109.

Conclusions.—The results show clearly that ND_3^+ and NMe₃⁺ are resonance donors of comparable magnitude to alkyl groups, while N2⁺ is a powerful resonance electron acceptor. Further, an NR₂ group, twisted orthogonally to the benzene ring plane still possesses resonance donor properties equivalent to an alkyl group.

The mechanism of electron donation is similar to that operating in the alkyl groups CH₃, CMe₃. Evidently any π -inductive effect of the integral charge is small in these compounds.

We thank the S.R.C. for Research Studentships (to N. C. C. and M. Y. S.)

[2/1068 Received, 11th May, 1972]

¹⁰ K. B. Whetsel, G. F. Hawkins, and F. E. Johnson, J. Amer.

Chem. Soc., 1956, 78, 3360.
 ¹¹ L. A. Kazitsyna, B. S. Kikot', L. D. Ashkinadze, and O. A. Reutov, *Doklady Akad. Nauk S.S.S.R.*, 1963, 151, 573.
 ¹² L. A. Kazitsyna, L. D. Ashkinadze, and O. A. Reutov, *Duril Acad. Sci. U.S.S. P.* 1067, 265

Bull. Acad. Sci. U.S.S.R., 1967, 685.

⁹ A. R. Katritzky and R. D. Topsom, in 'Advances in Linear Free Energy Relationships,' eds. N. B. Chapman and J. Shorter, Plenum Press, forthcoming.